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From Black-Scholes to Stochastic Volatility (SV) models

Black-Scholes model assumes the following dynamics for (physical) stock
price

dS(t) = uS(t) dt + o S(t) dW (2). (1)

However, the assumption of constant volatility is not realistic. We could
otherwise assume a stochastic volatility by replacing ¢ by o;, and give further
assumptions on the structure/dynamics of the stochastic volatility process. For
example, the Heston (1993) model assumes the following dynamics

dS(t) = p S(t)dt + \/v(t) S(t) dW,(2) (2)

dyJult) = B\ Jult) dt + 5 dWy(e). (3)
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Affine GARCH models

On the contrary, Affine GARCH models use a GARCH process to model the
conditional variance.

GARCH: Generalized Auto-Regressive Conditional Heteroscedasticity.

Features of GARCH models:

e Constant unconditional volatility but time-varying conditional volatility.
¢ \olatility at time ¢ depends on both past volatilities and past returns.

e Better fitting than continuous-time models.

Affine: Has closed form or quasi-closed form expressions for European call
option prices. In contrast, non-Affine models need to compute option price via
Monte Carlo simulation. Affine models are really convenient in:

e Computing option prices at a large scale.

e Model calibration using option prices.
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An example

Typical setup for Affine GARCH models: Affine GARCH models often begin
with assuming the (physical) stock price follows

log(S(t)) =log(S(t — 1)) +r+ Ah(t) +1/h(t)2(t) (4)
where:
r(t): daily risk-free rate
h(t): daily conditional variance, follows a particular GARCH process, for

example,
Heston-Nandi GARCH (2000) assumes

h(t)—w—i—ﬁh(t—l)—k(x(z(t—l)—w/h(t—l))Q (5)

A: risk premium (usually, higher volatility leads to higher price)

z(t): i.i.d. standard normal noise




Risk-neutral process of Heston-Nandi GARCH (2000)

We have seen that the widely used HN-GARCH (2000) model assumes the
following process

log(S(t)) = log(S(t — 1)) + 7+ Aa(t) + /R(t)=(1)

h(t) = w+ Bh(t — 1) + a (z(t 1) — 1y Jh(t — 1))

With further assumptions, we can write the risk-neutral process

log(S(8)) = log(S(t — 1)) + 7 — %h(t) 1 Jh) )

h(t) = w + Bh(t — 1) + a <z*(t 1) — 7" /h(t — 1))

where
1

2(t) = 2(t) + <A+§> h(t), ~* :HH%




Closed form option pricing formula

With this setting, at time ¢, an European call option with strike price K and
matures at 1" has price

C —e 0D B Max(S(T) — K, 0)] %S(t)

e—r(T—t) 00 K_i¢f*(i¢—|— 1)
— Re[ i ]Cw

T S wa*(w)] )
Ke T (2+7T/0 Re[ s do (11)

where the generating function f(¢) takes log-linear form

+

f(¢) =S(t)? exp

+ O T, 0) (+(0 v\ﬁ)] (12)

whose coefficients must be computed recursively.

At;T,¢)+ B(t; T, ¢)h(t + 1)




Problems with this setup

With this particular risk-neutral measure:

e HN-GARCH model fits both return and option data well, but the
parameters do not match.

Also, some stylized facts observed from financial data:
¢ Risk-neutral density has bigger tail than physical density.
¢ Risk-neutral volatility is often greater than physical volatility.
e Options tend to over-react to short-term volatility changes.

As a consequence, we want to find a non-trivial pricing kernel that links the
physical measure with risk-neutral measure well, and at the same time, reflect
these stylized facts in the model.
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Bigger tail of risk-neutral density
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Figure 1. A comparison of risk-neutral densities versus physical GARCH
histogram




U shape
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Figure 3. Ratio of densities on a log scale
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Higher risk-neutral volatility

Realized One-Month Volatility
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Figure 2. Realized volatility and VIX minus realized volatility
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Variance-dependent pricing kernel

To solve these issue, Christoffersen and Heston (2013) proposed a new
variance-dependent pricing kernel

¢ t
Aﬂw_ﬂﬂm(g%D wp(%+n§:M@+§w@+D—hﬂn> (13)

With physical process unchanged, the risk-neutral stock process is

log(S(t)) = og(S(t — 1) + = 51°(8) 4 /("1 (14)

2
h*(t) =w"+ Bh*(t —1)+ (z*(t — 1) —~"\/h*(t — 1)) (15)
where the risk-neutral parameters are
h(t ) h(t)/(1 = 208)
w'=w/(1-2af)
o = a/(1 —2af)?
V=7—09

12




Implications of this pricing kernel

e When ¢ = 0, This model corresponds with HN-GARCH (2000).

e When A > 0.5, ¢ >0,y >0, h*(t) > h(t), and expected future variance
for risk-neutral process exceeds expected future variance for physical
process.

e The logarithm of pricing kernel is a quadratic function of log stock return
R(t)

i (5755 ) =i (RO = 7 = ) = )

2
+ (n—I—{(ﬁ— 1)+ &a (,u———l—7> ) h(t)+ 9+ &w+ or
(16)
Furthermore, when & > 0, the pricing kernel is U-shaped.
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Volatility ratio

Volatility ratio
I

l.
Rl

0.8

IYiRne

e

L L L
1990 1992 1994 1996

L L [ L L L
1998 2000 2002 2004 2006 2008

L
2010

Figure 4. Ratio of risk-neutral and physical volatility
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U-shape pricing kernel
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Figure 5. Ratio of risk-neutral densities and physical densities on a log-log scale
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Another extension: Multivariate HN-GARCH

One extension for the single-asset HN-GARCH is the Multivariate HN-GARCH
with

Rt =rl+ /\Ztl + A\/ ZtZt (1 7)
2
hj,t = cuj + thj,t—l -+ Oéj (Zj,t—l — ’yj\/ hj,t—l) , ] = 1, ooy (18)

where:
r(t): daily risk-free rate
Ry: n x 1 vector of log returns of n—assets

A: n x n matrix of risk premium such that \;; is the risk premium
effect of the ;' asset onto the " asset

¥¢: n X n diagonal matrix that governs the covariance of the
multivariate noise z;

A: n x n invertible matrix that enforces the correlation between assets.
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Summary

Generalization (Stochastic
Volatility)
Black-Scholes - -
Special Case (Constant
Volatility)

Heaston (1993) Stochastic
Volatility Model

Discrete Version

Continuous-time
Limit Same pricing kernel
(discrete analog)

Generalization Generalization
Heston Nandi (2000) HN-GARCH with a

GARCH Special Case variance-dependent kernel

Multivariate HN-GARCH

Special Cass

Figure 6. Relation between different option pricing models
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