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Introduction
Overview

� Problem setting.

� Black Scholes Model and Heston Model.

� Delta hedge for a European Call Option.

� Deep reinforcement learning for hedging.

� Training of the neural network.

� Implemented algorithms and conclusion.
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Introduction
Problem setting

� Risk management and pricing under idealized complete markets.

� Hedging based on greeks from certain stochastic models.

� Is Machine Learning fixing the short comings of underlying models?

� Main paper of interest: Deep Hedging: Hedging Derivatives Under Generic
Market Frictions Using Reinforcement Learning. (March 2019). Swiss
Finance Institute Research Paper.
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Black Scholes Model
Model & Assumptions

� Assumptions:

→ The stock price follows a Geometric Brownian Motion.

→ Interest rate and volatility of stock assumed to be constant.

→ No dividends, no transaction costs.

� Risky asset dynamics:

dSt = µStdt + σStdWt

� Formula for a European Call Option:

C(St, t) = N(d1) · St −N(d2) ·K · e−r(T−t)

from BS equation
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Black Scholes Model
Short-comings

� Risk-free rate and volatility are dynamic in reality.

� Jumps in prices are not taken into account.

� Log returns are not necessarily normal distributed.

� The series of first differences of the log prices is not uncorrelated.
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Heston Model
Model & Assumptions

� Volatility of the risky asset is not constant but stochastic.

� Dynamics in the model:

dSt = µStdt +
√
νtStdW

S
t

dνt = κ(θ − νt)dt + ξ
√
νtdW

ν
t

where νt = volatility process
θ = long run average price variance
ξ = volatility of the volatility

� Sources of uncertainty are correlated:

dW S
t dW

ν
t = ρdt
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Heston Model
Short-comings

� Hard to find proper parameters to calibrate the model.

� Fitness of the model depends on these parameters.

� Jumps in prices are not taken into account.
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Delta-hedge for a European Call
Setting

� European Call Option given an index.

� Strategy:

→ Short in 1 call.

→ Calculate the ∆ of the option.

→ Long ∆ many future contracts on the index.

� ∆ of this hedging strategy is 0, i.e. the portfolio is not affected by small
changes in the underlying.
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Delta-hedge for a European Call
Limitations

� Assumption of complete markets with no trading costs.

� ∆ based on specific model may be inappropriate for real market.

� Jumps in the underlying after realizing the delta strategy may be a problem.
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Deep Reinforcement Learning
A different approach

� We want to hedge some portfolio z.

� We can input any relevant information which is available until time t.

� Our network has a LSTM structure inspired by rebalancing.

� The output will be the changes to the hedging portfolio.
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Deep Reinforcement Learning
A different approach

� The goal of the strategy which is obtained by the network is given by:

sup
π∈Λ

vπt (z|s) = sup
π∈Λ
−Cπ

t (s) + R [Gπ
t |st = s]

→ z is our portfolio which has to be hedged.

→ Cπ
t are costs at time t (e.g. fixed fee, or proportional).

→ R[·] a risk measure.

→ Gπ
t are the future cash flows.

→ st the current state of the economy.

� In our case, the authors chose CVaR(α):
R[X ] = supw∈R

(
w − 1

1−αE [(w −X)+]
)

.
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Delta-hedge for a European Call
Advantages of neural networks

� The hedging strategy can be dependent on historical data but also
simulated by theoretical models.

� It is easier to implement constraints (e.g. on capital, risk or regulations).

� The approach can consider market frictions (e.g. transaction costs).

� The model is computationally scaleable.

� OTC products can be priced.

� The calculation of the hedging strategy is encapsulated and we can
focus on modelling the market under realistic conditions.
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Training Algorithms
Introduction

The training of the model is done via the "Adam” optimizer in TensorFlow. Some
features of "Adam" includes

� Gradient desend: The next value is calculated based on the previous value
adjusted with the gradient.

� Adaptive learning rate: The bigger spread/uncertainty, the smaller the
learning rate.

� Better updates to the parameters provides faster training.
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Empirical Study
Problem setting

� Setup:

→ We are the seller of one European call with strike K and time to
maturity T (in days) with underlying price (· · · , S−1, S0).

→ Hedging Strategy: A portfolio δ = (δ0, δ1, ..., δT−1) where δi is the
number of asset we hold at time t. (Note at T the call is settled.)

→ PnL:

PnL = −C +
n−1∑
i=0

δi(Si+1 − Si)

→ Other assumptions can be easily added.

� Goal: We want to find a strategy that the combined portfolio has the lowest
risk, evaluated by some risk measure R(PnL).

� Training data: The training dataset (market data) is generated by a
discretized Black-Scholes series.
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Empirical Study
Benchmark strategy versus Deep Hedging

We simulate market data, train our RNN model, and then compare the
out-of-sample model performance of deep hedging (portfolio given by the
trained model) with the traditional B-S hedging (our benchmark model) in the
following 3 scenarios:

� No transaction cost; model trained with B-S market prices; tested with B-S
market prices.

� No transaction cost; model trained with B-S market prices; tested with
Heston prices.

� With a percentage transaction cost; model trained with B-S market prices;
tested with B-S prices.
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Empirical Study
Comparison of rebalancing periods
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Empirical Study
Senario 1

17



Empirical Study
Senario 1

Average PnL: -0.001 Average PnL: 0.001
99% CVaR: 1.225 99% CVaR: 1.012
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Empirical Study
Senario 2

Average PnL: -6.65 Average PnL: -0.12
99% CVaR: 23.15 99% CVaR: 35.28
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Summary
Advantages of deep hedging over B-S delta hedging

� Robustness: model-free approach.

� Extensibility: market frictions, more assets, other constraints, and other risk
measures.

� Scalability: computationally easier compared to traditional statistical
approaches.
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