Case Study: Deep Hedging

Korbinian Mayer

Maximilian Euthum

Xize Ye

iCAIR Online Seminar 2020

Introduction

Overview

- Problem setting.
- Black Scholes Model and Heston Model.
- Delta hedge for a European Call Option.
- Deep reinforcement learning for hedging.
- Training of the neural network.
- Implemented algorithms and conclusion.

iCAIR Online Seminar 2020

Introduction

Problem setting

- Risk management and pricing under idealized complete markets.
- Hedging based on greeks from certain stochastic models.
- Is Machine Learning fixing the short comings of underlying models?
- Main paper of interest: Deep Hedging: Hedging Derivatives Under Generic Market Frictions Using Reinforcement Learning. (March 2019). Swiss Finance Institute Research Paper.

Black Scholes Model

Model & Assumptions

- Assumptions:
 - → The stock price follows a Geometric Brownian Motion.
 - → Interest rate and volatility of stock assumed to be constant.
 - → No dividends, no transaction costs.
- Risky asset dynamics:

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

Formula for a European Call Option:

$$C(S_t,t) = N(d_1) \cdot S_t - N(d_2) \cdot K \cdot e^{-r(T-t)}$$
 from BS equation
$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0.$$

Black Scholes Model

Short-comings

- Risk-free rate and volatility are dynamic in reality.
- ♦ Jumps in prices are not taken into account.
- Log returns are not necessarily normal distributed.
- The series of first differences of the log prices is not uncorrelated.

Heston Model

Model & Assumptions

- Volatility of the risky asset is not constant but stochastic.
- Dynamics in the model:

$$dS_t = \mu S_t dt + \sqrt{\nu_t} S_t dW_t^S$$

$$d\nu_t = \kappa(\theta - \nu_t) dt + \xi \sqrt{\nu_t} dW_t^{\nu}$$
 where $\nu_t = \text{volatility process}$
$$\theta = \text{long run average price variance}$$
 $\xi = \text{volatility of the volatility}$

Sources of uncertainty are correlated:

$$dW_t^S dW_t^{\nu} = \rho dt$$

Heston Model

Short-comings

- Hard to find proper parameters to calibrate the model.
- ⋄ Fitness of the model depends on these parameters.
- Jumps in prices are not taken into account.

Delta-hedge for a European Call Setting

- European Call Option given an index.
- ♦ Strategy:
 - \rightarrow Short in 1 call.
 - \rightarrow Calculate the \triangle of the option.
 - \rightarrow Long \triangle many future contracts on the index.
- \diamond Δ of this hedging strategy is 0, i.e. the portfolio is not affected by small changes in the underlying.

Delta-hedge for a European Call

Limitations

- Assumption of complete markets with no trading costs.
- \diamond Δ based on specific model may be inappropriate for real market.
- ♦ Jumps in the underlying after realizing the delta strategy may be a problem.

Deep Reinforcement Learning

A different approach

- \diamond We want to hedge some portfolio z.
- \diamond We can input any relevant information which is available until time t.
- Our network has a LSTM structure inspired by rebalancing.
- The output will be the changes to the hedging portfolio.

Deep Reinforcement Learning

A different approach

The goal of the strategy which is obtained by the network is given by:

$$\sup_{\pi \in \Lambda} v_t^\pi(z|s) = \sup_{\pi \in \Lambda} -C_t^\pi(s) + R\left[G_t^\pi|s_t = s\right]$$

- \rightarrow z is our portfolio which has to be hedged.
- $\rightarrow C_t^{\pi}$ are costs at time t (e.g. fixed fee, or proportional).
- $\rightarrow R[\cdot]$ a risk measure.
- $\rightarrow G_t^{\pi}$ are the future cash flows.
- \rightarrow s_t the current state of the economy.
- \diamond In our case, the authors chose CVaR(α): $R[X] = \sup_{w \in \mathbb{R}} \left(w \frac{1}{1-\alpha} \mathbb{E} \left[(w X)^+ \right] \right)$.

Delta-hedge for a European Call

Advantages of neural networks

- The hedging strategy can be dependent on historical data but also simulated by theoretical models.
- It is easier to implement constraints (e.g. on capital, risk or regulations).
- The approach can consider market frictions (e.g. transaction costs).
- The model is computationally scaleable.
- OTC products can be priced.
- The calculation of the hedging strategy is encapsulated and we can focus on modelling the market under realistic conditions.

Training Algorithms

Introduction

The training of the model is done via the "Adam" optimizer in TensorFlow. Some features of "Adam" includes

- Gradient desend: The next value is calculated based on the previous value adjusted with the gradient.
- Adaptive learning rate: The bigger spread/uncertainty, the smaller the learning rate.
- Better updates to the parameters provides faster training.

Problem setting

- ♦ Setup:
 - \rightarrow We are the seller of one European call with strike K and time to maturity T (in days) with underlying price (\cdots, S_{-1}, S_0) .
 - \rightarrow Hedging Strategy: A portfolio $\delta = (\delta_0, \delta_1, ..., \delta_{T-1})$ where δ_i is the number of asset we hold at time t. (Note at T the call is settled.)
 - \rightarrow PnL:

$$\mathsf{PnL} = -C + \sum_{i=0}^{n-1} \delta_i (S_{i+1} - S_i)$$

- → Other assumptions can be easily added.
- \diamond Goal: We want to find a strategy that the combined portfolio has the lowest risk, evaluated by some risk measure $R(\mathsf{PnL})$.
- Training data: The training dataset (market data) is generated by a discretized Black-Scholes series.

Benchmark strategy versus Deep Hedging

We simulate market data, train our RNN model, and then compare the out-of-sample model performance of deep hedging (portfolio given by the trained model) with the traditional B-S hedging (our benchmark model) in the following 3 scenarios:

- No transaction cost; model trained with B-S market prices; tested with B-S market prices.
- No transaction cost; model trained with B-S market prices; tested with Heston prices.
- With a percentage transaction cost; model trained with B-S market prices; tested with B-S prices.

Comparison of rebalancing periods

Senario 1

Senario 1

Average PnL: -0.001 99% CVaR: 1.225

Average PnL: 0.001 99% CVaR: 1.012

Senario 2

Average PnL: -6.65 99% CVaR: 23.15

Average PnL: -0.12 99% CVaR: 35.28

Summary

Advantages of deep hedging over B-S delta hedging

- Robustness: model-free approach.
- Extensibility: market frictions, more assets, other constraints, and other risk measures.
- Scalability: computationally easier compared to traditional statistical approaches.

iCAIR Online Seminar 2020

Sources and References

Buehler, Hans and Gonon, Lukas and Teichmann, Josef and Wood, Ben and Mohan, Baranidharan and Kochems, Jonathan, Deep Hedging: Hedging Derivatives Under Generic Market Frictions Using Reinforcement Learning (March 19, 2019). Swiss Finance Institute Research Paper No. 19-80, Available at SSRN: https://ssrn.com/abstract=3355706

iCAIR Online Seminar 2020

